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Abstract
Background: Tremor is one of the most common symptoms of Parkinson’s disease (PD), which is 
widely being used in the diagnosis procedure. Accurate estimation of PD tremor based on Unified PD 
Rating Scale (UPDRS) provides aid for physicians in prescription and home monitoring. This article 
presents a robust design of a classification system to estimate PD patient’s hand tremors and the results 
of the proposed system as compared to the UPDRS. Methods: A smartphone accelerometer sensor is 
used for accurate and noninvasive data acquisition. We applied short‑time Fourier transform to time 
series data of 52 PD patients. Features were extracted based on the severity of PD patients’ hand tremor. 
The wrapper method was employed to determine the most discriminative subset of the extracted features. 
Four different classifiers were implemented for achieving best possible accuracy in the estimation of PD 
hand tremor based on UPDRS. Of the four tested classifiers, the Naive Bayesian approach proved to 
be the most accurate one. Results: The classification result for the assessment of PD tremor achieved 
close to 100% accuracy by selecting an optimum combination of extracted features of the acceleration 
signal acquired. For home health‑care monitoring, the proposed algorithm was also implemented on a 
cost‑effective embedded system equipped with a microcontroller, and the implemented classification 
algorithm achieved 93.8% average accuracy. Conclusions: The accuracy result of both implemented 
systems on MATLAB and microcontroller is acceptable in comparison with the previous works.
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Introduction
Parkinson’s disease (PD), the most 
widespread neurodegenerative illness 
after Alzheimer’s disease, is a chronic 
disorder causing progressive loss of 
dopamine‑producing brain cells.[1,2] The 
loss of dopamine in the midbrain induces 
the following movement disorders in PD 
patients: rigidity (increase of muscle tone 
that causes resistance to passive movement 
throughout the whole range of motion), 
tremor (involuntary rhythmic oscillations 
of one or more body parts), bradykinesia 
(slowness of motion), and hypokinesia 
(decreased amplitude of motion).[3]

The predominant method for the diagnosis 
of PD symptoms, such as tremor, is Unified 
PD Rating Scale (UPDRS).[2] PD motor 
examinations are being done under a subscale 
of UPDRS that is briefly described in Table 1. 
Using this scale, neurologists are able to 
assess a given PD patient’s hand tremor 
from 0 (absence of tremor) up to 4 (marked; 
interferes with most activities) [Table 2].

There are three forms of tremulous 
movements in PD; the resting tremor (RT) 
and the action tremor which is split 
into kinetic tremor (KT) and postural 
tremor (PT). RT can be distinguished from 
other forms of tremor on the basis of its 
appearance. The difference is recognizable 
when the tremoring body part is completely 
sustained against gravity without volitional 
muscle contraction, while action tremor 
appears with volitional muscle contraction. 
PT occurs while maintaining a posture 
against gravity and KT occurs during active 
movement. KT includes task‑specific tremor 
and tremor that is specific to aim‑directed 
movements.[4] The characteristic tremor of 
PD is indisputably the RT; however, it is 
extremely important to analyze the possible 
presence of other sorts of tremor such as 
the PT or KT.[5]

Although the UPDRS method is a 
sound clinical tool, it can be error‑prone 
depending on the physician employing it. In 
addition, the effectiveness of different types 
of PD hand tremor treatment methods is 
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predominantly evaluated by remotely tracing the frequency 
and severity of the tremor. This is accomplished by asking 
patients to fill out questionnaires detailing the type and 
severity of tremor experienced and requiring them to keep 
regular journals. However, this self‑reporting regularly 
does not correlate well with expert annotations in a clinical 
environment.[6] Thus, designing a system or a device 
to estimate PD hand tremor severity accurately helps 
neurologists to home‑monitor their patients and diagnose 
them more precisely.

In numerous studies, convenience of acceleration signals 
in the identification of tremors has been investigated.[5,7,8] 
Classification systems have been designed to identify 
different types of tremors such as PD, essential tremor, or 
physiological tremor.[7,9,10] Historically, investigators[11,12] 
utilized electromyographic (EMG) signals instead 
of acceleration signals to identify a given tremor. 
Recently, some researchers are focusing on the 
absence or presence and severity of PD tremors and 
are not utilizing the UPDRS method.[6] In the study 
by Kotsavasiloglou et al.,[13] a machine learning 
model was developed to differentiate healthy subjects 
and PD patients using trajectory of horizontal lines 
that they draw by an electronic pen on a tablet.
[14] used Magnetoencephalography (MEG) to quantify 
tremor changes after deep brain stimulation (DBS) 
correlated with clinical score using machine learning 
models. In the study.[15] the data acquired by wearable 
device were utilized to design a classification system 
which differentiates essential tremor from Parkinson’s 
tremor.[16] A classification system was designed for 
diagnosis between essential tremor and Parkinson’s 
tremor using a smartphone accelerometer.

Previous works were limited to the identification of the 
types of tremor using either acceleration or EMG signals. 
A few of them focused on the severity of the tremor in a 

way that is not interpretable for neurologists. In our work, 
we have provided a pattern recognition‑based system to 
assess PD hand tremors based on the UPDRS method. 
Through this instrumental assessment, neurologists would 
be able to prescribe according to the output of the system. 
Recording the acceleration signal via a smartphone and 
implementing the designed classification system on 
hardware show that our system provides home‑monitoring 
advantage.

Methodology
To implement the classification algorithm, a supervised 
learning pattern recognition structure is proposed shown 
in Figure 1. Five steps are included in the algorithm for 
PD hand tremor assessment. In the first step, the time 
series acceleration signal is filtered and then passed into 
the processing block. We have chosen a short‑time Fourier 
transform (STFT) block to transform time domain signal into 
frequency domain signal as a processing block. Features are 
extracted relative to PD hand tremor symptoms. To select 
the most discriminative features, we have implemented a 
wrapper method as a feature selection block in the fourth 
step. Finally, the classifier block estimates PD hand tremor 
using disentangled selected features.

Data acquisition

We used a Sony Xperia SP Android smartphone, which has 
a tri‑axial accelerometer and gyroscope sensor with 100 Hz 
sampling frequency for data acquisition. Acquired data can 
also be transferred via Wi‑Fi and Bluetooth to a PC as well 
as through the Internet network. The data can be stored 
on an SD card or on a remote cloud service. In this study, 
recorded signals were transferred to PC through SD card 
for algorithm design and for use in the evaluation board for 
feasibility of hardware implementation.

As it was advised by neurologists to make the smartphone 
wearable, the device was inserted into a bracelet fitted 
with a strap that allows convenient use.[3] The bracelet is 
made from elastic material which makes it flexible for 
applications in different patients. In addition, it has the 
ability to remain perfectly in contact with the limb and 
avoids unwanted vibrations and artifacts. A patient posture 
is shown in Figure 2.

To evaluate RT, PT, and KT, three different tests were 
conducted on participants. For RT evaluation, participants 
sat on a chair maintaining their arms without any 

Table 2: Tremor in Unified Parkinson’s Disease Rating 
Scale

UPDRS Clinical severity
0 Absent
1 Slight and infrequently present
2 Mild and persistent
3 Moderate and present most of the time
4 Marked and present most of the time
UPDRS – Unified Parkinson’s Disease Rating Scale

Table 1: Unified Parkinson’s Disease Rating Scale motor items
Subscale items Assessment Scale range
Bradykinesia Body bradykinesia, finger tapping, opening and closing hands 0‑36
Tremor Rest, action, and kinetic tremor for both hands and feet, 

resting tremor for face, lips, and chin
0‑32

Rigidity Rigidity in neck, left and right upper and lower extremis 0‑20
Postural Instability and Gait Disorder (PIGD) Falling, freezing, and ability to walk, gait, postural ability 0‑20
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contraction on their thighs and the smartphone started to 
record the acceleration values for 1 min. For PT evaluation, 
participants were asked to straighten their arm horizontally, 
parallel to their thighs when they were seated on the chair. 
In this scenario, the smartphone recorded the acceleration 
values for 1 min. For KT measurements, the participants 
sat on a chair while carrying out the index‑nose test, 
stretching the arms forward, and then performing forward 
and backward hand movements, bringing the index finger 
to the nose, and touching its tip. All three tests were done 
on both hands. Expert neurologists of Hazrat Rasoul Akram 
Hospital of Tehran determined the UPDRS score for each 
patient.

Acceleration signal of two groups of Parkinson patients 
was acquired as our database. The first group, consisting of 
36 patients, was considered as a training set, and the second 
group, consisting of 16 patients, was the testing set. Both 
groups covered all UPDRS scores, ranging from 0 to 4, 
which are detailed in Table 3. All of the participants agreed 
by voluntary written consent, in compliance with 
institutional review board procedures.

Signal filtering block

The hand tremor signals were recorded via a tri‑axis 
accelerometer. To avoid signal processing in three 
dimensions, we calculated root mean square (RMS) of the 
acquired signal to make it as a one‑dimensional signal. 
Tremor fluctuations disappeared over time. To identify 
nontremor windows as outliers, acceleration signal was 
divided into 4 s windows with 50% overlap, compatible 
with STFT block described in the next session. The standard 
deviation of each window was calculated; half of the 
maximum was considered as the upper threshold. Double 
of the minimum was considered as the lower threshold. 
Those windows whose standard deviation was not between 
the lower and upper threshold were removed as outliers. To 
eliminate noises and other undesired frequency bands, as 
suggested by earlier works[12,17] on Parkinson’s tremors, we 
applied three bandpass FIR Equiripple filters on the RMS, 

in three frequency bands, 3−6 Hz for RT, 6−9 Hz in case of 
PT, and 9−12 Hz for KT.

Processing block

Time series of hand tremor acceleration generates a 
nonstationary signal with periodic oscillations,[5] but its 
randomness is not completely arbitrary. This kind of 
signal contains numerous transitory or nonstationary 
features such as drift, trends, and abrupt changes.[16] 
These features contain nonuniform changes in time, such 
as magnitude and period. They could disappear sharply 
and appear again. To get more stable information of the 
signals on the shorter observation periods,[5,8] STFT with 4 
s window and 50% overlap using Hamming window were 
chosen. Since hand tremor signal changes abruptly and 
PD subjects usually show higher tremor amplitude during 
stressful conditions,[18] the STFT processing block provides 
the feasibility of separating tremor and nontremor in 4 s 
epochs. By this spectral analysis, fundamental frequency 
components and their relative features can be extracted 
efficiently.

Feature extraction block

Periodicity and intensity are two major characteristics that 
neurologists consider in clinical tremor diagnosis.[15,16] 
The extracted features render these two characteristics 
numerically in RT, PT, and KT frequency bands. The first 
extracted feature is fundamental frequency, F0, in each 
band. F0 is the frequency at which spectra reach maximum 
value.

To quantify the intensity of hand tremor, maximum and 
mean value of power spectrum density (PSD) in each 
frequency band was extracted as second and third features. 
PSD mean (weighted average) was calculated in each 
frequency band based on the following equation:

MeanPSD st
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In the Eq. 1, Fst is the start frequency of each band, for 
instance, if the start frequency of RT band is 3 Hz, then 
Fst equals 3. Similarly, Fsp is stop frequency, and for RT 

Table 3: Characteristics of the database
Patient Training set Test set
Number of subjects 
(males/females)

20 male/16 female 10 male/6 female

Age 54±13 53±7
Disease duration (year) 11±7 12±5
Tremor duration (s) 53±11 51±13

Figure 2: A subject under test for rest tremor (right) and postural tremor 
(left)[3]

Data 
Acquisition Filtering Processing Feature 

Extraction
Feature 

Selection Classification

Figure 1: Classification system block diagram
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patients, it is 6 Hz. Pi represents power of the signal at the 
frequency which is determined by fi. fi is frequency index 
of the desired tremor band. i is an index which starts from 
Fst to Fsp by 100 Hz sampling frequency steps.

Different subjects have different PSDs with different 
spreads. In some cases, the PSD is narrow, and in other 
cases, it is wide [Figure 3]. To numerically measure this 
spread, we extracted SF50 and F50 as fourth and fifth 
features.

F50 is the frequency which divides PSD into two parts 
equally; half of the area under PSD is on the right side 
of the F50 while the other 50% is on the left side. This 
provides an indication of the power distribution into the 
considered band. SF50 represents the frequency range 
which contains 68% of the PSD that is centered on F50[5] 
as shown in Figure 4. In some of the patients, the value of 
F0, fundamental frequency, and F50 was not same; hence, 
we calculated the difference between these two values as 
the sixth feature.

Feature selection block

To select the optimum combination of features that are rich 
in discriminative power, we applied both scalar and vector 
feature selection approaches. Fisher’s discriminant ratio 
(FDR) was applied as the scalar approach. It was employed 
to initialize the sequential forward selection (SFS) method 
as a vector approach. Thus, overfitting was eliminated by 
reducing the number of the features.[17]

FDR approach ranks the features according to the difference 
between their mean over their variances[19] [Table 4]. Based 
on FDR results, we took the PSD weighted average, 
MeanPSD, as the main feature of the SFS. According to 
SFS search technique, all possible combinations can be 

formed, and for each combination, its class separability 
can be computed.[20] Using this technique increases the 
accuracy of the classifier but also increases computational 
cost due to the mutual feedback link between this block 
and the classifier block. Main purpose of implementation of 
the feature selection block is dimension reduction; hence, 
computational cost is negligible. Optimum combination of 
features for each classifier is mentioned in Table 5 in the 
Results section.

Classification block

To achieve optimum accuracy, four different classifiers 
were implemented by considering the combination of 
extracted features according to the feature selection 
section. Naive Bayesian, K‑nearest neighbor, support 
vector machine (SVM), and artificial neural network 
(ANN) were employed in this study. Classifiers such 
as naive Bayesian are developed around the optimal 
Bayesian classifier, based on the probability calculation of 
each class using statistical features of the training data. 
Classifiers such as SVM draw decision boundaries that 
separate the classes from the training dataset.[21] Thus, 
both techniques were utilized. In Bayesian theory, x is 
assigned to the class ωi if

Table 4: Fisher’s discriminant ratio test result
Rank Features name
1 MeanPSD
2 F0
3 MaxPSD
4 F50
5 SF50
6 F50‑F0
PSD – Power spectrum density

Figure 3: Figure showing the power spectrum density spectrum where the horizontal axis shows the Frequency in Hz and the vertical axis shows the 
amplitude of power spectrum density, (a) belongs to patient with UPDRS0, (b) to UPDRS2, (c) to UPDRS4, (d-f) are raw signals of Parkinson patients in 
which (d) belongs to UPDRS0, (e) belongs to UPDRS2, and (f) to UPDRS4. UPDRS – Unified Parkinson’s Disease Rating Scale
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P x P x j iω ωi j( ) > ( ) ∀ ≠,  (2)

or
P x P P x P j iω ω ω ωi i j j( ) ( ) ∀ ≠( ) ( ),>  (3)

In this paper, we used Gaussian PDF in our naive Bayesian 
classifier which is defined.[21] In Eq. 4, μ is the mean of a 
specific feature in one of the classes and σ2 is the variance 
of the feature.

P x x( ) = −
−1

2 2

2

2πσ
µ
σ

exp( ( ) )  (4)

SVM is a strong classifier which was originally developed 
for binary problems at Bell Laboratories by Vladimir 
and Burges and Christopher;[22,23] however, in multiclass 
applications, its discriminatory power may declines.[24] 
SVM can be carried out by its different kernels such as 
linear, polynomial, radial, and bipolar sigmoid bases to 
achieve the most favorable accuracy.

ANNs’ accuracy varies by the number of input features and 
neurons in hidden layer as well as output layer function.[25] 
Backpropagation algorithm has been utilized to determine 
appropriate weights minimizing the error function of our 
ANN structure.

Results
To form a robust training dataset, 36 PD patients’ hand 
tremor acceleration signals were gathered. To make an 
independent test dataset, 16 other PD patients’ hand 
tremor signals were acquired. These were distinct from the 
training set. Both groups’ UPDRS was labeled by a team of 
neurologists. Table 6 shows the accuracy of each classifier 

before feature selection. All classifiers’ inputs were all six 
extracted features.

Table 5 represents improved accuracy results after selecting 
optimum combination of features. In Table 5, the first 
column indicates different types of classifiers which are 
used to obtain the best accuracy, the second column 
numbers are accuracies of each classifier, and the third 
column indicates the combination of features which give 
the best results.

Table 5 results of the different classifiers are not evaluated 
in patients. Those results were derived from using all of the 

Table 5: The test accuracy of each classifier with 
optimum set of features

Classifier Accuracy (%) Features
Naive Bayesian 97 MeanPSD, SF50, F0
KNN 87 MaxPSD, F0
ANN 91 MeanPSD, F50‑F0, SF50, F50, F0
SVM 70 MeanPSD, SF50, F50, F0
KNN – K‑nearest neighbor; ANN – Artificial neural network; 
SVM – Support vector machine; PSD – Power spectrum density

Table 6: The test accuracy of each classifier before 
feature selection

Classifier Accuracy (%)
Naive Bayesian 89
KNN 52
ANN 81
SVM 60
KNN – K‑nearest neighbor; ANN – Artificial neural network; 
SVM – Support vector machine

Figure 4: This figure represents how SF50 and F50 vary in different patients. (a) RT at UPDRS Level = 0. (b) RT at UPDRS Level = 2.  (c) RT at UPDRS 
Level = 4. (d) PT at UPDRS Level = 4. UPDRS – Unified Parkinson’s Disease Rating Scale; RT – Resting tremor; PT – Postural tremor
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features’ values per number of windows in each group of 
participants. Our test dataset included 16 participants was 
divided into five groups, 0–4. For each participant’s hand 
tremor, acceleration values were recorded for 1 min on 
average and separated into 4 s windows. Total number of 
windows for all of 16 participants in the test data set was 
201. The relative accuracies of Table 5 were calculated 
based on these 201 windows. Table 7 represents results of 
the different classifiers evaluated in 16 participants of the 
test subset. For instance, the second row of Table 7 shows 
that the UPDRS score of all of the 16 participants’ tremor 
has been assessed correctly. For each patient, extracted 
features in Table 5 in all of the tremor windows fed into 
classifiers. Average of driven UPDRS scores shows UPDRS 
score of each patient’s hand tremor. As it is shown in 
Figure 5, A comparison between windowwise accuracy, 
Table 5, and subject‑wise accuracy, Table 7, assessing the 
UPDRS score of each patient’s tremor by taking average of 
UPDRS scores that is derived from a classifier leads to the 
best possible result.

Hardware implementation feasibility

Main aim of designing this classification system is taking 
the place of clinical method of Parkinson patient’s tremor 
assessment, as a portable embedded system. Therefore, 
after designing a superior algorithm using MATLAB, it 
is implemented on a microcontroller with Cortex‑M4 core 
[Figure 6].

Due to flexibility of STM32F407VG in floating point 
computation, also its Cortex‑M4 core which encompasses 
a full set of DSP functions and instructions as well as a 
memory protection unit, it has been chosen as a processor 
of evaluation board. Similar to the way the algorithm was 
designed, this evaluation board could read data which are 
acquired by a smartphone, and then, it does the designed 
process and assesses the tremor of a PD patient. Based on 
numerical result of naive classifier mentioned in Table 5, 
the pattern recognition structure of Figure 7 has been 
implemented on a microcontroller with Cortex‑M4 core. 
Numerical result of Table 5 reveals that MeanPSD, SF50, 
and F0 are the most discriminative features. Therefore, 
implementation of the feature selection block is not 
needed. The same training dataset, 36 participants, and 

testing dataset, 16 participants, were used to develop the 
designed classification system on the evaluation board. 
Acquisitions were made at the same time with evaluation 
board and smartphone. Designed classification system 
was implemented on microcontroller with Cortex‑M4 
core by efficient use of memory. The accuracy result 
of algorithm implementation on the CortexM4‑based 
microcontroller is 94%.

Discussion and Conclusion
In this paper, we proposed a classification system to 
assess hand tremors of PD patients based on UPDRS. We 
recruited 1‑min recorded acceleration values of 36 different 
patients as input of the training set of our algorithm. The 
input signal in the first step was interpolated and filtered 
through three frequency bands in the case of RT, PT, and 
KT. An STFT block was applied to the filtered signal to 
separate extracted features on equal windows. PD patients’ 
hand tremor severity (UPDRS level) varies with time. It 
was determined that a 4 s window of STFT block is ideal 

Table 7: The test accuracy of the different classifiers 
evaluated in patients

Classifier Accuracy (%) Features Participants
Naive 
Bayesian

100 MeanPSD, SF50, F0 16

KNN 87 MaxPSD, F0 16
ANN 93 MeanPSD, F50‑F0, 

SF50, F50, F0
16

SVM 75 MeanPSD, SF50, F50, F0 16
KNN – K‑nearest neighbor; ANN – Artificial neural network; 
SVM – Support vector machine; PSD – Power spectrum density

Figure 6: ARM-based microcontroller evaluation board

Figure 5: Simple comparison between two different results

FIR filter STFT Naive
Bayesian

MeanPSD,
SF50,F0

Figure 7: Block diagram of implemented structure on STM32F407VG
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for averaging UPDRS level windows to achieve absolute 
UPDRS of each patient [Tables 5 and 7]. To achieve 
optimal accuracy, a feature selection block is applied 
to select features with higher order of discriminative 
capability for each classifier [Tables 4 and 6].

To evaluate hardware implementation feasibility of the 
proposed classification system, it was implemented 
on STM32F407VG ARM microcontroller. PD tremor 
estimation by STM32F407VG is about 6% less accurate 
than the one with MATLAB. This difference is inevitable 
due to memory limitation of STM32F407VG. MATLAB 
utilizes 4‑16 GB RAM of a PC, whereas the RAM capacity 
of STM32F407VG is only 192 KB which limits the user to 
memory‑consuming applications. By optimizing the C code 
of the designed algorithm, 94% accuracy achieved.

Our work is based on a set of algorithms for obtaining an 
objective classification of tremor according to UPDRS. 
Our system can replace clinical Parkinson patients’ tremor 
assessment via the UPDRS method with impressive 
accuracy, which is novel in comparison with previous works 
in the field. As mentioned in the introduction, most of them 
are able to detect absence or presence of different types of 
tremors such as essential tremor, Parkinson’s tremor, and 
cerebellar tremor. There are a few number of presented 
systems for assessment of Parkinson’s tremor‑like;[6] 
however, in their systems, they have utilized a limited 
training dataset. For instance, Cole et al.[6] used 11 patients 
in their training database with both accelerometer and EMG 
signals. In this paper, we presented an economical portable 
system with impressive accuracy which only utilizes 
accelerometer data. We have utilized 52 participants’ hand 
tremor acceleration signal to train and test our system. This 
is the strongest database for developing such a system in 
comparison with previous works.

The developed system is very appropriate for using in 
assessment, diagnosis and remote control of a Parkinson 
patient’s ambulatory and home monitoring. It can be 
connected to the hospital network, via a wireless module 
of the ARM processor embedded on the board, to give 
day‑to‑day details of the patient.

Acquiring data by smartphone make the proposed home 
monitoring system user‑friendly. However, recorded 
acceleration values of the PT state of specifically elder 
Parkinson patients by smartphone could have minor 
inaccuracies. For these patients, keeping their hands straight 
for 1 min is a source of fatigue, so they have to be asked to 
do the PT task for only 30 s rather than a longer time period.

A precise assessment of Parkinson’s tremors is extremely 
important, especially during treatment of the disease where 
it must be determined whether to prescribe certain drugs or 
tune the electrodes. The electrodes stimulate the brain of 
patients who have had DBS surgery to diminish their hand 
tremor. Furthermore, the high correlation with UPDRS 

allows physicians to have an objective and universal report 
for the evaluation of patients with PD.

Ninety‑four percent accuracy of ARM‑based 
microcontroller shows that a convenient portable system 
can be used by both Parkinson patients and neurologists as 
a monitoring tool. The designed classification system can 
be implemented on smartwatches or smartphones for the 
same purpose. The proposed home monitoring system was 
limited by just reporting the UPDRS level of PD patients’ 
hand tremor. To make the system more versatile, working 
on compilation of other UPDRS factors by including other 
symptoms of Parkinson’s such as rigidity or dyskinesia 
could be done for multiple‑symptom management of these 
patients. The designed system will make home monitoring 
possible for Parkinson patients where a cloud‑based service 
is able to gather reports from many patients and deliver 
these to the neurologist remotely. In addition, this allows 
neurologists to calibrate and regulate drug therapy based on 
long‑term observations rather than simple outpatient visits.
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